Главная » Саморазвитие » Викариозное нуклеофильное замещение. Примеры нуклеофильных реакций Бимолекулярное нуклеофильное замещение

Викариозное нуклеофильное замещение. Примеры нуклеофильных реакций Бимолекулярное нуклеофильное замещение

Одним из наиболее распространенных и важных механизмов органических превращений является нуклеофильное замещение у насыщенного атома углерода. В результате такого процесса уходящие группы $Z$ в органических субстратах $RZ$, содержащих связи $C_sp3-Z$, за-мещаются нуклеофильными реагентами $Nu$: таким образом, что не-поделенные пары нуклеофилов в продуктах реакций $RNu$ становятся электронными парами $\sigma$-связей $C-Nu$, а электронные пары $s$-связей $C-Z$ становятся неподеленными парами отщепившихся уходящих групп:

Уходящие группы $Z$ часто называют нуклеофугами («подвижные в виде нуклеофилов»). Хорошая уходящая группа имеет высокую нуклеофугность, плохая уходящая группа - низкую нуклеофугность. К группам с высокой нуклеофугностью относится, трифлатная (OTf) группа, которая уходит в виде анионов $Z^-=CF_3SO_3^-$, а также фторсульфонатные $FSO_3^-$, пара-толуолсульфонатные или тозилатные (OTs-) и др. К группам с низкой нуклеофугностью относятся ацетатная группа, карбоксилат-ионы $(RCOO^-)$, а также $F^-$.

Реакции нуклеофильного замещения классифицируют в соответствии с изменением заряд ов в субстратах или нуклеофилах и по типу механизмов замещения.

Классификация реакций нуклеофильного замещения по зарядному признаку

По зарядному признаку такие реакции разделяют на четыре группы.

    Взаимодействие нейтральных субстратов с нейтральными нуклеофилами

    $Nu: + RZ \to Nu^+-R + Z^-$

    Например:

    Взаимодействия нейтральных субстратов с анионными нуклеофилами

    $Nu:^- + RZ \to NuR + Z:^-$

    Например:

    Замена одних галогенов на другие

    Изотопные и групповые обмены

  1. Катионные субстраты - нейтральные нуклеофилы

    $Nu: + RZ^+ \to Nu^+-R + Z:^-$

    Например:

    Катионные субстраты - анионные нуклеофилы

    $Nu:^- + RZ^+ \to NuR + Z:$

    Например:

Замечание 1

Из приведенного перечня реакций следует, что при помощи различных реакций нуклеофильного замещения можно осуществлять синтезы практически любых класов соединений алифатического ряда.

Классификация реакций нуклеофильного замещения по типу механизма реакции

В зависимости от типов механизмов реакций нуклеофильного замещения их можно разделить на бимолекулярные, которые обозначаются как $S_N2$. А также мономолекулярные, которые обозначаются как $S_N1$.

Кроме того, органические реакции можно разделит на три категории:

  1. изомеризации и перегруппировки,
  2. диссоциации и рекомбинации,
  3. замещений.

В такой классификации реакции идущие по механизму SN2 относятся к третьей категории, a реакции идущие по механизму SNl - ко второй:

Значимость нуклеофильного замещения

Изучение механизмов нуклеофильного замещения имеет исключительную роль в развитии представлений об реакций органической химии и одновременно с этим они представляют собой наиболее детально изученные типы превращений. Исследования механизмов нуклеофильного алифатического замещения были начаты в середине 1930-х годов двумя выдающимися учеными К. К. Ингольдом и Э. Д. Хьюзом. Им принадлежат блестящие основополагающие работы, составляющие золотой фонд органической химии. Впоследствии исследования Ингольда и Хьюза были значительно модифицированы и их теории претерпели ряд изменений. Но предложенние этими учеными классифицировать механизмы замещения на $S_N2-$ и $S_N1-$типы до сих пор остается актуальным и справедливым.

Номенклатура:

1) заместительная (систематическая),

2) радикало-функциональная.

Для низших и наиболее распространённых представителей приемлемыми являются и тривиальные названия, например, фтороформ, хлороформ, бромоформ, йодоформ, фторотан.

Строение и свойства

В зависимости от природы галогена от фтора к йоду полярность связи C–Hal уменьшается (так как уменьшается электроотрицательность галогена), но возрастает её поляризуемость и увеличивается длина (так как увеличивается радиус атома галогена), а прочность связи при этом уменьшается.

Так как поляризуемость связи C–I наибольшая, то при растворении йодоалканов в полярных растворителях эта связь легко поляризуется вплоть до гетеролитического разрыва, то есть до гетеролитической диссоциации йодоалкана: R–I ® R + + I - . При этом химические свойства соединений сильно зависят от их поляризуемости.

Реакции нуклеофильного замещения

Нуклеофильные частицы:

- , RO - , - NH 2 , F - , Cl - , Br - , I - , CN - , H - , - CH 2 -R

H 2 O, ROH, NH 3 , RNH 2 , RR ¢NH, H 2 S, RSH

Механизм бимолекулярного нуклеофильного замещения

Механизм мономолекулярного замещения

где II - тесная ионная пара

III - рыхлая ионная пара

IV и V - диссоциированные ионы



Факторы, влияющие на механизм и скорость нуклеофильного замещения

1. Влияние структуры субстрата .

бромметан бромэтан 2-бромпропан

Скорость S N 2-реакции:

,

Поэтому высокая скорость реакций нуклеофильного замещения может быть характерна и для первичных, и для третичных алкилгалогенидов .

В первом случае - за счёт лёгкости взаимодействия по S N 2-механизму (свободный доступ реакционного центра, нет стерических препятствий),

во втором - по S N 1-механизму (лёгкость диссоциации субстратов, стабильность образующегося карбокатиона).

Вторичные алкилгалогениды в большинстве случаев должны реагировать по смешанному механизму, причём скорость реакций у них будет относительно небольшой, так как есть препятствия для протекания и мономолекулярного, и бимолекулярного замещения.

2. Влияние природы нуклеофила.

3. Влияние растворителей и катализаторов.

4. Влияние природы уходящей группы.

Примеры реакций нуклеофильного замещения

1) Гидролиз галогеналканов - это превращение их в спирты по схеме:

R-Х + H 2 O ® R-OH + HХ

Механизм реакции: S N 1или S N 2 - определяется, в основном, структурой субстрата, а также другими факторами. Например, щелочной гидролиз бромэтана (S N 2-механизм):

Кислотный гидролиз 2-бром-2-метилпропана (S N 1-механизм):

2) Алкоголиз галогеналканов - это взаимодействие галогеналканов с алкоголятами металлов (реакция Вильямсона ), приводящее к образованию простых эфиров:

R-Hal + R ¢-O - Na + ® R-O-R ¢ + NaHal

Нуклеофильная частица - алкоголят-анион R ¢-O - .

При этом при синтезе смешанных эфиров (с разными R и R ¢) необходимо осуществить правильный выбор галогеналкана и алкоголята (RHal и R ¢-O - или R ¢Hal и R-O - - в зависимости от структуры углеводородных радикалов) для того, чтобы реакция протекала с наибольшей скоростью, а возможность образования алкена (протекание конкурирующей реакции отщепления) была бы сведена к минимуму .

3) Аммонолиз галогеналканов - это взаимодействие галогеналканов с аммиаком, приводящее к получению аминов (или их солей) - алкилирование аминов по Гофману

R-Х + NН 3 ®[R-NН 3 ] + Х - R-NН 2 + NН 4 Х

4) Замена одного атома галогена на другой :

R-Br + I - ® R-I + Br -

Кислая среда и протонные растворители способствуют замещению атома фтора,

а высокополярные апротонные растворители, наоборот, атома йода, так как нуклеофильность галогенид-ионов уменьшается в ряду I - >Br - >Cl - >F -

5) Взаимодействие с цианидами - это взаимодействие галогеналканов с солями синильной кислоты, приводящее к образованию органических цианидов (нитрилов) или изоцианидов. Цианид-ион является амбидентным нуклеофилом, то есть, способен проявлять свои нуклеофильные свойства, как за счёт атома углерода, так и за счёт атома азота:

- : C ºN ®: C=N : -

Механизм S N 1 - приводит к образованию изоцианидов (изонитрилов):

R + + : C=N : - ® R-N=С :

Механизм S N 2:

При этом образуются цианиды (нитрилы).

6) Взаимодействие с нитритами.

Нитрит-анион также является амбидентным нуклеофилом.

Поэтому его взаимодействие с галогеналканами может привести либо к нитросоединениям, либо к эфирам азотистой кислоты.

Способность галогеналкаиов вступать в реакции S N обусловлено полярностью связи углерод-галоген. Атом галогена, имея большую электроотрицаггельность, чем атом углерода, смешает на себя электронную плотность связи С-Hal. В результате атом галогена приобретает частичный отрицательный заряд (δ -), а атом углерода – частичный положительный заряд (δ +). Галогеналканы вступают в реакции с нуклеофильными реагентами, и при этом происходит замещение галогена на нуклеофил.

В зависимости от строения галогеналкана, природы нуклеофила и растворителя реакции S N протекают по двум основным направлениям: S N 1 и S N 2.

Механизм S N 2 (бимолекулярное нуклеофильное замещение)

По механизму S N 2 реагируют первичные и несколько труднее вторичные галогеналканы. Реакция протекает в одну стадию через образование переходного состояния. Вначале нуклеофил атакует атом углерода, связанный с галогеном (электрофильный центр), со стороны, противоположной связи С-Hal , т. е. атака идет с тыла, В результате происходит постепенное вытеснение нуклеофилом галогенид-иона (уходящей группы). Этот процесс включает переходное состояние, т. е. момент, когда связь С-Hal еще не разорвалась, а связь C-Nu еще не полностью образовалась.

Образование переходного состояния сопровождается изменением гибридного состояния атома углерода с sр 3 на sp 2 , Одна доля негибридизованной р-атомной орбитали атома углерода в переходном состоянии частично перекрывается с орбиталью атакующего нуклеофила, а вторая – с орбиталью атома галогена.

Возвращение атома углерода в 3 -гибридное состояние после отщепления галогенид-иона происходит с обращением конфигурации.

Протеканию реакции по механизму S N 2 способствуют активные нуклеофильные реагенты – они легче образуют переходное состояние – и апротонные растворители. поскольку протонные полярные растворители сольватируют нуклеофил, тем самым снижая его реакционную способность.

По предложению английского химика К. Ингольда описанный механизм получил обозначение S N 2. Буква S указывает на замещение. N – на нукдеофильный тип реакции, а цифра 2 обозначает, что реакция является бимолекулярной, т. е. в стадии, определяющей скорость реакции в целом (в данном случае образование переходного состояния), участвует два реагента (галогеналкан и нуклеофил). Скорость реакций, протекающих по механизму зависит от концентрации обоих реагентов.

Механизм S N 1 (мономолекулярное нуклеофильное замещение)

Поэтому механизму происходит нуклеофильное замещение в третичных и, в определенных условиях, во вторичных галогеналканах. В молекуле третичных галогеналканов объемные заместители при атоме углерода, связанном с галогеном, создают пространственные препятствия для подхода нуклеофила к электрофильному центру, и его атака с тыла становится невозможной. Вместе с тем третичные галоген-алканы способны в сильнополярных средах к ионизации. По механизму S N 1 реакция протекает в две стадии:



На первой стадии происходит диссоциация молекулы галогеналкана при участии молекул протонного полярного растворители. В результате образуются карбкатион и галогенил-ион. Поскольку процесс ионизации протекает медленно, то 1 стадия определеят скорость всей реакции. На второй стадии образовавшийся карбкатион быстро реагируете нуклеофилом.

Протеканию реакции по механизму S N 1 способствуют высокая ионизирующая и сольватирующая способность растворителя, а также стабильность образующегося карбкатиона. Устойчивость алкильных карбкатионов обусловлена делокализацией положительного заряда за счет +I-эффекта алкильных групп и возрастает в ряду:

Поэтому третичные галогенопроиэводные легче всего подвергаются ионизации.

Механизм нуклеофильного замещения, протекающий по рассмотренной схеме, называется мономолекулярным, т. к. на стадии, определяющей скорость всего процесса (стадия 1), принимает участие молекула только одного реагента – галогеналкана. Такой механизм обозначают S N 1.

Таким образом, на основании вышеизложенного можно сделать вывод, что первичные галогеналканы обычно реагируют по механизму S N 2, третичные – по механизму S N l. Вторичные галогеналканы, в зависимости от природы нуклеофила и растворителя, могут реагировать как по механизму S N 2, так и по механизму S N 1.



1. Гидролиз галогеналканов. Галогеналканы гидролизуются до спиртов. Реакцию обычно проводят в присутствии водных растворов щелочей, т. к. с водой она протекает медленно.

2. Реакция Вильямсона. Эта реакция является одним из лучших способов получения простых эфиров. Она заключается во взаимодействии галогеналканов с алкоголятами или фенолятами.

3. Взаимодействие с солями карбоновых кислот (ацетолиз). При действии солей карбоновых кислот на галогеналканы образуются сложные эфиры. Реакцию проводят в среде апротонного полярного растворителя.

4. Взаимодействие с аммиаком, алкил- и ариламинамц (аммонолиз и аминолиз). При взаимодействии с аммиаком и аминами галогеналка-ныадкилируют их с образованием смеси первичных, вторичных и третичных аминов, а также солей – четвертичных аммониевых оснований. Например, первичный амин образуется по схеме:

5. Взаимодействие с солями цианоаодородной кислоты. Первичные и вторичные галогеналканы с цианидом калия или натрия в среде апротонного полярного растворителя образуют нитрилы (S N 2):

6. Взаимодействие с солями азотистой кислоты. Продукты, образующиеся в результате этой реакции, зависят от условий ее проведения, строения галогеналкана и соли.

Общая схема реакции:

Нуклеофил отдает субстрату свою пару электронов, за счет которой образуется новая связь, а галоген уходит со своей парой электронов в виде галогенид-аниона. При этом происходит алкилирование нуклеофила.

Для нуклеофильного замещения у атома углерода в состоянии sp 3 -гибридизации установлено два основных механизма: бимолекулярное нуклеофильное замещение (S N 2 ) и мономолекуляное нуклеофильное замещение (S N 1 ).

Бимолекулярное нуклеофильное замещение.
Бимолекулярное нуклеофильное замещение - это синхронный процесс, который протекает в одну стадию. Разрыв старой и образование новой связи происходят одновременно. Нуклеофил атакует субстрат со стороны, противоположной уходящей группе (с тыла), и постепенно вытесняет ее из молекулы:

Y: + R-Hal ® ® Y-R + Hal -

переходное
состояние

S N 2-реакции имеют следующие основные признаки.

    1. Кинетический признак

Скорость реакции зависит от концентрации и субстрата, и нуклеофила. Реакция имеет второй общий порядок (первый по субстрату и первый по нуклеофилу) и описывается кинетическим уравнением:

  1. v=k[Y]
    1. Стереохимический признак

Если нуклеофильное замещение происходит у асимметрического атома углерода, то имеет место обращение конфигурации, так как в переходном состоянии три нереагирующие группы и центральный атом углерода находятся в одной плоскости, а входящая и уходящая группы расположены на одной прямой, перпендикулярной этой плоскости. В результате структура выворачивается, как зонтик:

Мономолекуляное нуклеофильное замещение.
Мономолекулярное нуклеофильное замещение протекает в две стадии:

На первой стадии под действием растворителя происходит гетеролитический разрыв связи в субстрате, в результате чего образуется карбокатион. Процесс протекает медленно и определяет скорость реакции в целом. На второй стадии карбокатион быстро реагирует с нуклеофилом, давая продукт замещения.

Энергетическая диаграмма процесса имеет вид:

S N 1-реакции имеют следующие основные признаки.

    1. Кинетический признак

Скорость реакции зависит только от концентрации субстрата, поскольку нуклеофил не участвует в лимитирующей стадии процесса. Реакция имеет первый порядок и описывается кинетическим уравнением:

v=k
    1. Cтереохимический признак

Если нуклеофильное замещение происходит у асимметрического атома углерода, то, как правило, образуется рацемическая смесь, так как атака нуклеофилом плоского карбокатиона с обоих сторон равновероятна:

Факторы, влияющие на ход нуклеофильного замещения

Легкость протекания реакции и ее механизм зависят от многих факторов, среди которых можно выделить следующие:

    • строение углеводородного радикала субстрата;
    • природа уходящей группы;
    • сила нуклеофила;
    • природа растворителя.

Влияние строения углеводородного радикала.

Реакционная способность первичных, вторичных и третичных алкилгалогенидов в реакциях нуклеофильного замещения различна, причем порядок реакционной способности зависит от механизма реакции.

Скорость реакций, протекающих по механизму S N 1, зависит от стабильности карбокатиона, образующегося на первой стадии реакции. Таким образом, реакционная способность алкилгалогенидов в реакциях S N 1 возрастает в ряду:

который соответствует ряду стабильности карбокатионов:

Успех реакции S N 2 определяется эффективностью атаки нуклеофила на положительно заряженный реакционный центр субстрата. Поэтому электронодонорные радикалы R, понижая положительный заряд на реакционном центре, замедляет нуклеофильную атаку. В то же время увеличению объема R затрудняет подход нуклеофила к реакционному центру. Совместное действие индуктивного и объемного эффектов определяет ряд реакционных способностей субстратов в реакциях нуклеофильного замещения:

Высокой реакционной способностью независимо от механизма реакции обладают аллил- и бензилгалогениды. В процессе S N 1 они дают карбокатионы, стабилизированные засчет сопряжения:

Бензил-катион

Легкость, с которой аллил- и бензилгалогениды вступают в S N 2-реакции объясняют участием кратных связей в стабилизации переходного состояния.

Влияние природы уходящей группы.

Реакционная способность алкилгалоненидов зависит от прочности связи углерод - галоген, которая уменьшается в ряду:

C-F > C-Cl > C-Br > C-I.

Не менее важно, чтобы уходящая группа была термодинамически стабильна. (Она должна быть более устойчива, чем атакующий субстрат нуклеофил). Хорошими (относительно устойчивыми) уходящими группами являются слабые основания. Галогенид-анионы - хорошие уходящие группы. Их относительная стабильность возрастает по мере уменьшения их основности в ряду:

F - < Cl - < Br - < I -

Параллельно увеличивается и реакционная способность алкилгалогенидов независимо от того, по какому из двух механизмов протекает реакция:

RF < RCl < RBr < RI

Влияние природы нуклеофила.

Нулеофильность - это способность частицы взаимодействовать с атомом углерода, несущим целый или частичный положительный заряд. Нуклеофильность является кинетической характеристикой и определяется константами скоростей соответствующих реакций.

Нуклеофилы, как и основания, могут быть сильными и слабыми. Единой шкалы нуклеофильности не существует, так как относительная сила нуклеофила может изменяться в зависимости от природы субстрата и растворителя. Однако можно выделить следующие основные закономерности.

1) Отрицательно заряженные нуклеофилы сильнее, чем нейтральные молекулы (сопряженные им кислоты):

OH - > H 2 O; RO - > ROH; NH 2 - > NH 3

2) Для элементов одного периода с ростом электроотрицательности атома нуклеофильность уменьшается:

NH 2 - > OH - > F -

R 3 C - > RNH 2 - > RO - > F -

3) Электронодонорные заместители увеличивают, электроноакцепторные - уменьшают нуклеофильность. Например, для кислородсодержащих нуклеофилов установлен следующий ряд реакционной способности:

RO - > OH - > ArO - > RCOO -

В рассмотренных примерах порядок нуклеофильности реагентов совпадает с порядком их основности и объясняется теми же причинами. Однако сила нуклеофила определяется не только его основностью, но иполяризуемостью .

4) Для элементов одной подгруппы с возрастанием заряда ядра нуклеофильность увеличивается, несмотря на уменьшение основности:

RS --

I - - - -

Рост нуклеофильности связан с увеличением поляризуемости атомов и ионов по мере увеличения их радиуса. Чем выше поляризуемость нуклеофила, тем легче деформируется его электронное облако и тем в большей степени он способен передать электронную плотность на субстрат.

Такой порядок нуклеофильности может быть объяснен также с позиций принципа ЖМКО. Основность по Бренстеду проявляется во взаимодействии с жесткой кислотой Н + , в то время как нуклеофильность проявляется во взаимодействии с более мягким кислотным центром - атомом углерода, для которого предпочтительным будет взаимодействие с мягкими основаниями Льюиса - RS - и I - .

Кроме того, относительная сила нуклеофилов зависит от природы растворителя. Чем меньше размер аниона, тем лучше он сольватируется полярными протонными растворителями (т.е. растворителями, способными образовывать с анионом водородные связи), что снижает его реакционную способность. При замене растворителя порядок реакционной способности нуклеофилов может меняться на противоположный.

В соответствии с механизмами S N 2 и S N 1 природа нуклеофила оказывает влияние на ход S N 2-реакции, так как нуклеофил участвует в лимитирующей (и единственной) стадии процесса, и не влияет на скорость реакций, протекающих по механизму S N 1, лимитирующая стадия которых протекает без участия нуклеофила.

Влияние природы растворителя

Растворитель влияет на скорость и механизм реакций нуклеофильного замещения.

Протеканию реакции по механизму S N 1 способствуют сильноионизирующие растворители. К ним относятся полярные протонные растворители (вода, спирты, карбоновые кислоты), так как они хорошо сольватируют ионные интермедиаты: отрицательно заряженную уходящую группу - за счет водородных связей, карбокатион - за счет свободных пар электронов.

Влияние растворителя на S N 2-реакции проявляется в меньшей степени и зависит от распределения зарядов в исходном и переходном состояниях. Как правило, их скорость уменьшается с ростом полярности растворителя и увеличивается при переходе от протонных растворителей к апротонным (диметилформамид, диметилсульфоксид, ацетонитрил). В апротонных растворителях, которые не способны к образованию водородных связей, нуклеофил (а это, как правило, анион) в меньшей степени сольватирован и, следовательно, обладает большей силой, что важно для S N 2-реакции.

Таким образом, протеканию реакций по механизму S N 2 способствуют:

  • субстрат с углеводородным радикалом малого объема (первичным);
  • апротонный растворитель;
  • сильный нуклеофил.

Реализации механизма S N 1 способствуют:

  • субстрат с углеводородным радикалом разветвленного строения (третичным);
  • полярный протонный растворитель;
  • слабый нуклеофил.

По легкости замещения галогена независимо от механизма реакции галогенпроизводные располагаются в следующий ряд:

аллил- и бензилгалогениды > алкилгалогениды > винил- и арилгалогениды

Галогенпроизводные, содержащие связь (винил- и арилгалогениды), обладают очень низкой реакционной способностью. Реакция протекает по иному механизму. Малую подвижность галогена в винил- и арилгалогенидах объясняют увеличением прочности связи C-Hal за счет сопряжения пары электронов галогена с электронами p -связей:

Примеры реакций нуклеофильного замещения

Реакции нуклеофильного замещения галогена широко используются в органическом синтезе. С их помощью можно заменять галоген на другие функциональные группы или углеводородные радикалы и получать из галогенпроизводных любые классы органических соединений.

Примеры синтетического использования галогенпроизводных алифатических углеводородов приведены в таблице.

Таблица 7. S N -реакции галогенпроизводных
Субстрат + нуклефил ® продукт + уходящая группа
Получение спиртов
R-Hal + OH - (H 2 O) ® R-OH + Hal - (HHal)
CH 3 Br + NaOH CH 3 OH + NaBr
(CH 3) 3 CCl + H 2 O ® (CH 3) 3 COH + HCl
CH 2 =CH-CH 2 Cl + H 2 O ® CH 2 =CHCH 2 OH+HCl
Получение простых эфиров
R-Hal + R / O - ® R-OR / + Hal -
СH 3 I + CH 3 CH 2 O - Na + ® CH 3 OCH 2 CH 3 + NaI
Получение сложных эфиров
R-Hal + R / COO - ® R / COOR + Hal -
CH 3 CH 2 I + CH 3 COO - Na + ® CH 3 COOCH 2 CH 3 + NaI
Получение тиолов
R-Hal + SH - ® R-SH + Hal -
CH 3 СH 2 Br + NaHS ® CH 3 СH 2 SH + NaBr
Получение сульфидов
R-Hal + R / S - ® R-SR / + Hal -
CH 3 СH 2 Br CH 3 СH 2 S - Na + ® (CH 3 СH 2) 2 S + NaBr
Получение аминов и аммониевых солей
R-Hal + NH 2 - ® RNH 2 + Hal -
R-Hal + R / 3 N ® R R / 3 N + Hal -
Получение нитрилов
R-Hal + Сє N - ® R- Сє N + Hal - (S N 2)
CH 3 СH 2 Br + NaCN ® CH 3 СH 2 CN + NaBr
Получение нитросоединений
R-Hal NO 2 - ® R-NO 2 + Hal - (S N 2)
CH 3 CH 2 I AgNO 2 ® CH 3 CH 2 NO 2 + AgI
Получение галогенпроизводных
R-Hal + I - ® R-I + Hal - (S N 2)
CH 3 Cl + NaI ® СH 3 I + NaCl

Винил- и арилгалогениды инертны по отношению к нуклеофильным реагентам. Замещения галогена в галогенбензолах возможно только в очень жестких условиях, например:

Введение электроноакцепторных заместителей в орто - и пара -положения к галогену активизируют галогенарены в S N -реакциях:

Аналогично 2,4-динитрофторбензол взаимодействует с аминогруппами аминокислот и пептидов, что используется для установления их аминокислотного состава:

При нуклеофильном замещении нуклеофил атакует молекулу субстрата, предоставляя ей для образования новой связи свои электроны. Электроны разрывающейся связи уходят вместе с освобождающимся ионом. Такие ионные реакции идут преимущественно в жидкой фазе, поскольку растворитель стабилизирует образующиеся ионы за счет сольватации, что невозможно в газовой фазе.

Нуклеофильное замещение позволяет вводить в молекулу органического соединения большое количество функциональных групп, способных выступать в роли нуклеофилов. Например:

В роли нуклеофилов могут выступать и нейтральные молекулы, например:

Примеры реакций с участием бромистого этила, в качестве субстрата, приведены ниже:

Особенностью реакций нуклеофильного замещения является то, что они одни из самых распространенных в органической химии, а соответственно одни из самых изученных. В частности изучение кинетики реакции нуклеофильного замещения. Химическая кинетика - это изучение изменения концентрации реагентов или продуктов во времени. Изменение характеризуется производной концентрации по времени dc/dt. Устанавливают взаимосвязь производной с концентрациями реагентов или, при необходимости, с концентрациями продуктов.

Изучение изменения концентрации реагентов во времени в условиях реакции нуклеофильного замещения показало, что возможны два случая:

В первом случае изменение концентрации пропорционально только концентрации субстрата dc/dt = К[галоидный алкил]

Во втором случае изменение концентрации пропорционально концентрации субстрата и концентрации нуклеофильной частицы - dc/dt = К[галоидный алкил]×[нуклеофил]

Механизм, соответствующий первому случаю назван мономолекулярным нуклеофильным замещением и обозначается S N 1 .

Механизм, соответствующий второму случаю назван бимолекулярным нуклеофильным замещением и обозначается S N 2

1.4.2. Механизм S N 1 . Мономолекулярное замещение

По механизму S N 1 , например протекает гидролиз трет -бутилбромида:

В механизме S N 1 различают следующие стадии:

На первой стадии происходит ионизация галогенопроизводного с образованием карбкатиона и бромид-иона. Эта стадия является скоростьлимитирующей и характеризуется наиболее высокой энергией активации:

Бромид-ион образует с молекулами воды водородные связи и тем самым стабилизируется. Образующийся карбкатион также стабилизируется сольватацией растворителем. Но большее значение имеет стабильность самого карбкатиона. Он должен быть стабилизирован внутримолекулярными электронными эффектами, т.н. быть третичным или находиться в сопряжении с π-электронной системой (быть резонансно-стабилизированным).

На второй стадии происходит быстрое взаимодействие карбкатиона с нуклеофилом, в частности с водой.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта